library(psych)
library(tidyverse)
Google Presentation
Libraries
ggplot Theme
library(showtext)
font_add_google(name="Poppins", family="Poppins")
font_add_google(name="DM Serif Text", family="DM Serif Text")
<- function() {
theme_ssk ::theme_bw() +
ggplot2::theme(
ggplot2axis.text = element_text(colour = "#0c4846", family = "Poppins", size = 12),
axis.title = element_text(colour = "#0c4846", family = "DM Serif Text", size = 14),
legend.title = element_text(colour = "#0c4846", family = "Poppins", size = 13),
legend.text = element_text(colour = "#0c4846", family = "Poppins", size = 12),
plot.title = element_text(colour = "#0c4846", family = "Poppins", size = 13, face = "bold"),
plot.subtitle = element_text(colour = "#0c4846", family = "Poppins", size = 13, face = "italic"),
strip.text = element_text(colour = "#0c4846", family = "Poppins", size = 13)) +
::theme(panel.background = element_rect(fill = "#fffbef", color = "#0e0d0d"),
ggplot2plot.background = element_rect(fill = "#fffbef"))
}
<- function(fun, geom="crossbar", ...) {
stat_sum_df stat_summary(fun.data=fun, colour="black", geom=geom, width=.5, ...)
}
Data
<- read.csv("../Teacher Intervention Pilot/combined-data_20240107.csv")
teachers
<- read.csv("../Intervention-Workplace/workplace-data_20240105.csv") staff
Classroom Intervention
summary(lm(burnout2Reverse ~ Condition, teachers))
Call:
lm(formula = burnout2Reverse ~ Condition, data = teachers)
Residuals:
Min 1Q Median 3Q Max
-1.6594 -0.6594 -0.1854 0.3406 3.8146
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.65942 0.09371 28.379 < 2e-16 ***
ConditionTreatment -0.47399 0.12964 -3.656 0.000304 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.101 on 287 degrees of freedom
(108 observations deleted due to missingness)
Multiple R-squared: 0.0445, Adjusted R-squared: 0.04117
F-statistic: 13.37 on 1 and 287 DF, p-value: 0.0003045
ggplot(data=teachers, aes(factor(Condition), burnout2Reverse, fill=factor(Condition))) +
geom_bar(stat="summary", fun.y="mean", position="dodge") +
stat_sum_df("mean_cl_boot", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
scale_y_continuous(breaks=c(1:6)) +
coord_cartesian(ylim=c(1,6)) +
labs(x = "Intervention Condition",
y = "Anticipated Burnout") +
scale_fill_manual(values = c("#facdcd", "#f48382")) +
theme_ssk() +
theme(legend.position="none")
Workplace Intervention
summary(lm(burnout ~ Condition, staff))
Call:
lm(formula = burnout ~ Condition, data = staff)
Residuals:
Min 1Q Median 3Q Max
-3.03226 -1.04545 -0.03226 0.96774 2.96774
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0323 0.2754 14.641 <2e-16 ***
ConditionTreatment -0.9868 0.4275 -2.308 0.0251 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.533 on 51 degrees of freedom
(59 observations deleted due to missingness)
Multiple R-squared: 0.0946, Adjusted R-squared: 0.07685
F-statistic: 5.329 on 1 and 51 DF, p-value: 0.02506
ggplot(staff, aes(Condition, burnout, fill=Condition)) +
geom_bar(stat="summary", fun.y="mean", position="dodge") +
stat_sum_df("mean_cl_boot", geom = "errorbar", position= position_dodge(.9), conf.int=.68, width=0.2) +
scale_y_continuous(breaks=c(1:8)) +
coord_cartesian(ylim=c(1,8)) +
labs(x = "Intervention Condition",
y = "") +
scale_fill_manual(values = c("#ffeec1", "#FFC931")) +
theme_ssk() +
theme(legend.position="none")